Thuyết tương đối hẹp Thuyết_tương_đối

Nguyên lý tương đối

Thuyết tương đối hẹp dựa trên hai tiên đề:[15]

  • Tốc độ ánh sáng trong chân không có độ lớn bằng c (=299792458 m/s) trong mọi hệ quy chiếu quán tính, không phụ thuộc vào phương truyền và tốc độ của nguồn sáng hay máy thu
  • Các định luật vật lý có cùng một dạng như nhau trong mọi hệ quy chiếu quán tính (nguyên lý tương đối). Những hệ quy chiếu chuyển động đều gọi là hệ quy chiếu quán tính.
Môi trường ê te: các nhà vật lý từng giả thiết rằng Trái Đất chuyển động trong "môi trường" chứa ê te giúp ánh sáng lan truyền.

Galileo Galilei đã miêu tả một dạng của nguyên lý tương đối trong cuốn "Dialogo sopra i due massimi sistemi del mondo" vào năm 1632 bằng minh họa về một người ngồi trên con thuyền và nguyên lý này cũng được Newton áp dụng cho cơ học của ông. Một hệ quả trực tiếp của nguyên lý này là không có cách nào để đo vận tốc tuyệt đối của quan sát viên chuyển động đều trong không gian và không thể định nghĩa một hệ quy chiếu đứng yên tuyệt đối. Hệ này phải chứa một thứ gì đó đứng im đối với mọi thứ khác và nó mâu thuẫn với nguyên lý tương đối, theo đó các định luật vật lý trong mọi hệ quy chiếu phải là như nhau. Trước khi có sự ra đời của thuyết tương đối, lý thuyết điện từ cổ điển đề xuất sóng điện từ lan truyền trong môi trường gọi là ê te, một môi trường đứng im bất động. Môi trường này lấp đầy không gian với cấu trúc rắn chắc và do đó các nhà vật lý dùng nó để định nghĩa một hệ quy chiếu tuyệt đối. Trong hệ này các định luật vật lý sẽ có dạng đơn giản và tốc độ ánh sáng sẽ không phải là hằng số do vậy trái ngược với nguyên lý tương đối. Tuy nhiên mọi thí nghiệm nhằm chứng minh sự tồn tại của ê te, như thí nghiệm Michelson - Morley nổi tiếng vào năm 1887 đều thất bại khi không phát hiện ra sự sai khác về tốc độ khi ánh sáng lan truyền theo các hướng khác nhau trong môi trường ê te giả định.[5]

Einstein đã từ bỏ khái niệm thông thường về không gian và thời gian cũng như giả thuyết ê tê để lý giải được vẻ mâu thuẫn bề ngoài giữa nguyên lý tương đối và tốc độ ánh sáng không đổi trong lý thuyết điện từ. Không phải ngẫu nhiên mà có những thí nghiệm và kết luận trong thuyết điện từ dẫn tới sự khám phá ra thuyết tương đối, như thí nghiệm di chuyển cuộn dây và nam châm. Einstein đã đặt tên cho bài báo công bố năm 1905, khai sinh ra thuyết tương đối hẹp, "Về điện động lực học của các vật thể chuyển động" để thể hiện sự trân trọng đối với lý thuyết điện từ Maxwell và ảnh hưởng của nó tới khám phá của ông.[15]

Tính tương đối của không gian và thời gian

Các sự kiện A, B, và C xảy ra theo thứ tự khác nhau phụ thuộc vào trạng thái chuyển động của quan sát viên. Đường màu trắng thể hiện mặt phẳng các sự kiện xảy ra đồng thời di chuyển từ quá khứ sang tương lai.

Không gian và thời gian không còn là cấu trúc bất biến phổ quát trong thuyết tương đối nữa. Cụ thể, các quan sát viên sẽ nhận xét hai sự kiện xảy ra trong không gian và thời gian là đồng thời hay sớm hoặc trễ tùy thuộc vào trạng thái chuyển động của họ. Vật thể chuyển động có kích thước bị ngắn lại theo hướng chuyển động so với khi nó đứng yên và đồng hồ chuyển động chạy chậm hơn so với đồng hồ đặt yên một chỗ. Tuy nhiên, mỗi quan sát viên chuyển động với vận tốc đều đưa ra kết luận chỉ đúng trong hệ quy chiếu của riêng họ, do vậy những kết luận từ hai quan sát viên có tính tương hỗ lẫn nhau, ví dụ như mỗi người sẽ thấy đồng hồ của người kia chạy chậm lại. Thêm nữa, nếu hai người chuyển động dọc theo hướng nhìn của nhau, mỗi người sẽ thấy thước đo của người kia ngắn đi. Nguyên lý tương đối không thể trả lời cho câu hỏi về người nào miêu tả là đúng mà nó chỉ cho biết kết quả của từng người thu được.[16]

Sự co ngắn chiều dài và sự dãn thời gian có thể dễ dàng hiểu được từ biểu đồ Minkowskinghịch lý anh em sinh đôi. Trong dạng thức toán học, chúng là kết quả của phép biến đổi Lorentz miêu tả mối liên hệ giữa tọa độ không gian và thời gian của các quan sát viên khác nhau. Phép biến đổi tuyến tính này được rút ra trực tiếp từ hai tiên đề trên.[16]

Hầu hết các hiệu ứng tương đối tính đều trở nên đáng kể khi vận tốc là tương đối lớn so với tốc độ ánh sáng, do vậy phần lớn các hiện tượng hàng ngày có thể giải thích dựa trên cơ học Newton và những hiệu ứng tương đối tính có vẻ như trái ngược với trực giác.[16]

Tốc độ ánh sáng là một giới hạn

Bài chi tiết: Tốc độ ánh sáng

Không một vật nào và không một thông tin nào có thể đi nhanh hơn ánh sáng trong chân không. Càng gần tiếp cận với tốc độ ánh sáng, thì năng lượng vật đó càng lớn, bởi vì động năng của vật luôn luôn tăng rất nhanh khi vận tốc của nó tăng. Để vật đạt tới tốc độ ánh sáng thì cần phải cung cấp cho vật năng lượng lớn vô hạn.[17]

Kết luận trên là hệ quả của cấu trúc không thời gian không phải là thuộc tính của vật, chẳng hạn do hạn chế về công nghệ chế tạo tàu vũ trụ. Nếu một vật chuyển động nhanh hơn ánh sáng từ A tới B, và một quan sát viên chuyển động từ B tới A thì lúc này câu hỏi ai miêu tả tình huống đúng đắn lại có ý nghĩa. Khi đó quan sát viên sẽ nhìn thấy kết quả trước khi nhìn thấy nguyên nhân (anh ta nhìn thấy vật xuất hiện ở B trước khi thấy nó đi ra từ A). Như vậy, nguyên lý nhân quả bị vi phạm bởi vì trình tự nguyên nhân kết quả không được xác định.[18] Những vật chuyển động nhanh hơn ánh sáng sẽ đi ra khỏi tầm quan sát của người hoặc thiết bị theo dõi.

Không thời gian

Bài chi tiết: Không thời gian
Biểu đồ Minkowski với hệ quy chiếu (x,t) đứng yên, hệ quy chiếu (x′,t′) chuyển động, nón ánh sáng và hyperbol đánh dấu những khoảng không thời gian hằng số so với gốc tọa độ.

Không gian và thời gian xuất hiện trong những phương trình cơ bản của thuyết tương đối có vai trò như nhau và có thể kết hợp thành không thời gian bốn chiều. Sự cảm nhận về không gian và thời gian theo cách khác nhau chỉ là do cảm nhận của con người. Về mặt toán học, khoảng không thời gian giữa hai sự kiện được định nghĩa bằng hiệu tọa độ không thời gian bốn chiều của hai sự kiện trong một hệ quy chiếu giống như định nghĩa về khoảng cách giữa hai điểm trong không gian Euclide, chỉ có một điểm khác là tọa độ thời gian ngược dấu với tọa độ không gian. Trong không thời gian cũng định nghĩa vectơ bốn như vectơ thông thường trong không gian ba chiều.[18][19]

Trong không thời gian Minkowski, giới hạn tốc độ ánh sáng và tính tương đối của độ dài và khoảng thời gian phân ra những vùng riêng biệt đối với mỗi quan sát viên:

  • Miền các điểm nằm trong nón ánh sáng tương lai là các điểm mà quan sát viên có thể tới được với vận tốc ánh sáng hoặc gửi đi tín hiệu với tốc độ ánh sáng.[20]
  • Miền các điểm nằm trong nón ánh sáng quá khứ là các điểm gửi đi với tín hiệu có tốc độ bằng tốc độ ánh sáng tới được quan sát viên.[20]
  • Những điểm còn lại nằm trong miền "kiểu-không gian" tách biệt khỏi quan sát viên. Trong miền này, không thể định nghĩa được quá khứ và tương lai.[21]

Các vectơ-bốn không thời gian có nhiều ứng dụng thực tiễn và lý thuyết, ví dụ như trong tính toán động năng của các hạt chuyển động trong máy gia tốc.[21]

Sự tương đương giữa khối lượng và năng lượng

Một hệ có khối lượng m chứa trong nó một năng lượng nghỉ E liên hệ bởi công thức[22]

E = m c 2 {\displaystyle E=mc^{2}}

với c là tốc độ ánh sáng. Công thức này là một trong những công thức nổi tiếng nhất của vật lý học nói riêng và khoa học nói chung. Cũng vì công thức này mà Einstein hay bị hiểu nhầm rằng ông có liên quan tới sự phát triển của bom nguyên tử mặc dù chỉ có lá thư của ông gửi tới tổng thống Franklin D. Roosevelt là đề cập tới việc Hoa Kỳ cần phải cảnh giác với chương trình nghiên cứu vũ khí của Đức Quốc xã.[23] Lượng năng lượng khổng lồ giải phóng ra từ phản ứng phân hạch hạt nhân phần lớn là do giải phóng năng lượng liên kết của các hạt nhân trước khi phản ứng trong khi năng lượng bởi sự chênh lệch khối lượng trước và sau phản ứng nhân với hệ số c² chỉ đóng góp phần nhỏ. Phản ứng phân hạch được Otto Hahn, Otto FrischLise Meitner phát hiện vào năm 1938.[24][25]

Phương trình E=mc² đóng góp vai trò hỗ trợ trong nghiên cứu phân hạch hạt nhân. Không phải vì cơ chế đằng sau năng lượng hạt nhân, nhưng mà là một công cụ: Bởi vì năng lượng và khối lượng tương đương với nhau, những phép đo độ nhạy cao về khối lượng của các hạt nhân nguyên tử khác nhau cho những nhà nghiên cứu chứng cứ quan trọng về độ lớn của năng lượng liên kết hạt nhân. Công thức của Einstein không nói cho chúng ta tại sao năng lượng liên kết hạt nhân lại lớn đến cỡ đó mà nó mở ra một khả năng (cùng với những phương pháp khác) để đo những năng lượng liên kết này.[23]

Từ trường trong thuyết tương đối

Sự tồn tại của lực từ có mối liên hệ mật thiết với thuyết tương đối hẹp.[26] Định luật Coulomb về lực điện khi đứng riêng rẽ sẽ không thể tương thích với cấu trúc của không thời gian. Thật vậy, khi các điện tích đứng yên sẽ không có từ trường xuất hiện, trừ khi có một quan sát viên đang di chuyển so với các điện tích. Có thể giải thích kết quả quan sát này dựa trên phép biến đổi Lorentz giữa mối liên hệ của vectơ từ trường và vectơ điện trường, cho thấy mối liên hệ khăng khít giữa từ trường, điện trường và hệ quy chiếu được lựa chọn. Sự xuất hiện của từ trường khi đưa nam châm di chuyển đến gần vòng dây dẫn (và ngược lại), hay tổng quát hơn khi có từ trường biến đổi thì xuất hiện điện trường (và ngược lại) còn liên quan đến thuộc tính của không gian và thời gian.[27] Từ phương diện này, tuy hai định luật Coulomb và định luật Biot-Savart có vẻ khác nhau nhưng khi xét trong từng hệ quy chiếu của quan sát viên đứng yên hay chuyển động sẽ cho những kết quả như nhau. Trong mô tả toán học của thuyết tương đối, từ trường và điện trường được miêu tả chung bằng một đại lượng, tenxơ trường điện từ hạng bốn, tương tự như sự thống nhất giữa không gian và thời gian trong không thời gian bốn chiều.[28]

Tài liệu tham khảo

WikiPedia: Thuyết_tương_đối http://homepage.univie.ac.at/Franz.Embacher/rel.ht... http://teacher.eduhi.at/alindner/Dyn_Geometrie/Rel... http://www.fourmilab.ch/etexts/einstein/specrel/ww... http://gme.grolier.com/article?assetid=0107090-0 http://gme.grolier.com/article?assetid=0244990-0 http://gme.grolier.com/article?assetid=0272730-0 http://www.nature.com/news/einstein-s-gravitationa... http://www.nature.com/news/gravitational-waves-6-c... http://www.nature.com/news/gravitational-waves-dis... http://www.springer.com/gp/